Answer : The balanced molecular equation will be:

Explanation :
Molecular equation : It is a balanced chemical reaction in which the ionic compounds are expressed as the molecules instead of component ions.
According to the question, when iron react with copper (II) sulfate then it react to give iron (II) sulfate and copper as a product. In this reaction, iron is more reactive metal than the copper metal. So, it can easily displace copper metal form the solution.
The balanced molecular equation will be:

2Al+6HCl⇒3H₂+2AlCl₃
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
• 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
• 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
• 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
Al+HCl⇒H₂+AlCl₃
aAl+bHCl⇒cH₂+AlCl₃
Al, left=a, right=1⇒a=1
Cl, left=b, right=3⇒b=3
H, left=b, right=2c⇒b=2c⇒3=2c⇒c=3/2
the equation becomes :
Al+3HCl⇒3/2H₂+AlCl₃ x2
2Al+6HCl⇒3H₂+2AlCl₃
Answer:
Explanation:
Option B volume is the correct answer
If you cut the cube and keep all the pieces you are causing only physical change
Answer:
0!
Explanation:
- You need to search your pKa values for Asn (2.14, 8.75), Gly (2.35, 9.78) and Leu(2.33, 9.74), the first value corresponding to -COOH, the second to -NH3 (a third value would correspond to an R group, but in this case that does not apply), and we'll build a table to find the charges for your possible dissociated groups at indicated pH (7), we need to remember that having a pKa lower than the pH will give us a negative charge, having a pKa bigger than pH will give us a positive charge:
-COOH -NH3
pH 7------------------------------------------------------
Asn - +
Gly - +
Leu - +
- Now that we have our table we'll sketch our peptide's structure:
<em>HN-Asn-Gly-Leu-COOH</em>
This will allow us to see what groups will be free to react to the pH's value, and which groups are not reacting to pH because are forming the bond between amino acids. In this particular example only -NH group in Ans and -COOH in Leu are exposed to pH, we'll look for these charges in the table and add them to find the net charge:
+1 (HN-Asn)
-1 (Leu-COOH)
=0
The net charge is 0!
I hope you find this information useful and interesting! Good luck!