Answer:
the initial velocity is 20 m/s and the acceleration is 2 m/s²
Explanation:
Given equation of motion, v = 20 + 2t
If V represents the final velocity of the object, then the initial velocity and acceleration of the object is calculated as follows;
From first kinematic equation;
v = u + at
where;
v is the final velocity
u is the initial velocity
a is the acceleration
t is time of motion
If we compare (v = u + at) to (v = 20 + 2t)
then, u = 20 and
a = 2
Therefore, the initial velocity is 20 m/s and the acceleration is 2 m/s²
Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

Electric field due to a point charge is given as

here we know that

also the distance is given as

now we will have

so we will have

so above is the electric field due to proton
Answer:
995.12 N/C
Explanation:
R = 9 cm = 0.09 m
σ = 9 nC/m^2 = 9 x 10^-9 C/m^2
r = 9.1 cm = 0.091 m
q = σ x 4π R² = 9 x 10^-9 x 4 x 3.14 x 0.09 x 0.09 = 9.156 x 10^-10 C
E = kq / r^2
E = ( 9 x 10^9 x 9.156 x 10^-10) / (0.091 x 0.091)
E = 995.12 N/C
Diagram 4 is the correct answer.