Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x
Answer: To determine acceleration ,Micah also needs the Time of the total trip in seconds.
Explanation:
Acceleration can be defined as rate of change of velocity.

for calculating acceleration, initial and final velocity are required in meter per second and the total time of the trip in seconds. Then acceleration is measured in meter per second square.
Thus, Micah knows that a car had a change in velocity of 15 m/s.To determine acceleration ,Micah also needs the <u>Time</u> of the total trip in seconds.
The car mas more mass than a bicycle. Newton's second law states force equals mass times acceleration.
Free fall acceleration should be it