Answer:
a)
b)
Explanation:
We use the kinematics equations:
starting from rest


We find now the speed

Answer:

Explanation:
The annual electricity cost is:


Answer:
6,600N
Explanation:
According to second law of motion, Force = mass × acceleration
If acceleration = change in velocity/time = 15/0.10
Acceleration = 150m/s²
Given mass = 44kg
Force = 44× 150
Force = 6,600N
Magnitude of the average force exerted on the passenger during this time is 6,600N
Answer:
The frequency of the sound wave is 800Hz
The speed of sound in a is about 340m/s.
Velocity = frequency x wavelength
making wavelength the subject formula
wavelength = Velocity/frequency.
wavelength = 340/800
wavelength = 0.425m.
- Gravitational force depends only on mass and distance, not on the state of matter.
- The forces of attraction between molecules in matter are electromagnetic in nature, not gravitational.
- These attractive forces are stronger in a solid than in a liquid than in a gas.
- Gravitational forces between molecules is completely negligible compared to the em forces.
So, key answer is inter-molecular forces of solids is stronger than liquids.