Answer:
This:
Explanation:
Black holes occur when a massive star or larger reaches the final stage of it's lifespan. The star implodes and a black hole is the dying star's remains
Answer is: A) 7.84 g.
V(Mg(NO₃)₂) = 151 mL ÷ 1000 mL/L.
V(Mg(NO₃)₂) = 0.151 L; volume of the magnesium nitrate.
c(Mg(NO₃)₂) = 0.352 M; molarity of the solution.
n(Mg(NO₃)₂) = V(Mg(NO₃)₂) · c(Mg(NO₃)₂).
n(Mg(NO₃)₂) ) = 0.151 L · 0.352 mol/L.
n(Mg(NO₃)₂) = 0.0531 mol; amount of the substance.
M(Mg(NO₃)₂) = Ar(Mg) + 2Ar(N) + 6Ar(O) · g/mol.
M(Mg(NO₃)₂) = 24.3 + 2·14 + 6·16 · g/mol.
M(Mg(NO₃)₂) = 148.3 g/mol; molar mass.
m(Mg(NO₃)₂) = n(Mg(NO₃)₂) · M(Mg(NO₃)₂).
m(Mg(NO₃)₂) = 0.0531 mol · 148.3 g/mol.
m(Mg(NO₃)₂) = 7.84; mass of magnesium nitrate.
<span>The outer layers of the planet are gas. Deeper within the planet, pressure compresses the gases into a liquid. Some evidence suggests that Jupiter may have a small rocky core at its center.</span>
Answer:
The O atom will tend to attract the electrons.
Explanation:
The electronegativity of O (3.5) is much higher than H (2.1), which means it is more likely to attract electrons. The higher the electronegativity, the more attractive.
The colored light emitted is energy and in order to emit energy the element should first obtain energy. The energy absorbed by the substance can be in the form of radiation, heat or electricity. Hope this answers the question. Have a nice day.