1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
2 years ago
9

I aavahva

Physics
2 answers:
ioda2 years ago
5 0
The answer should be 88 protons, 138 neutrons, 88 electrons bc the atomic number equals protons and protons equal electrons and to get the atomic mass you add protons and neutrons and 88+138=226
Dovator [93]2 years ago
4 0
7684&29826 land Kaufman oqok19384
You might be interested in
An astronaut goes out for a space walk. Her mass (including space suit, oxygen tank, etc.) is 100 kg. Suddenly, disaster strikes
Marina CMI [18]

Answer:

<u>Part A:</u>

Unknown variables:

velocity of the astronaut after throwing the tank.

maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen.

Known variables:

velocity and mass of the tank.

mass of the astronaut after and before throwing the tank.

maximum time it can take the astronaut to return to the spacecraft.

<u>Part B: </u>

To obtain the velocity of the astronaut we use this equation:

-(momentum of the oxygen tank) = momentum of the astronaut

-mt · vt = ma · vt

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

To obtain the maximum distance the astronaut can be away from the spacecraft we use this equation:

x = x0 + v · t

Where:

x = position of the astronaut at time t.

x0 = initial position.

v = velocity.

t = time.

<u>Part C:</u>

The maximum distance the astronaut can be away from the spacecraft is 162 m.

Explanation:

Hi there!

Due to conservation of momentum, the momentum of the oxygen tank when it is thrown away must be equal to the momentum of the astronaut but in opposite direction. In other words, the momentum of the system astronaut-oxygen tank is the same before and after throwing the tank.

The momentum of the system before throwing the tank is zero because the astronaut is at rest:

Initial momentum = m · v

Where m is the mass of the astronaut plus the equipment (100 kg) and v is its velocity (0 m/s).

Then:

initial momentum = 0

After throwing the tank, the momentum of the system is the sum of the momentums of the astronaut plus the momentum of the tank.

final momentum = mt · vt + ma · va

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

Since the initial momentum is equal to final momentum:

initial momentum = final momentum

0 = mt · vt + ma · va

- mt · vt = ma · va

Now, we have proved that the momentum of the tank must be equal to the momentum of the astronaut but in opposite direction.

Solving that equation for the velocity of the astronaut (va):

- (mt · vt)/ma = va

mt = 15 kg

vt = 10 m/s

ma = 100 kg - 15 kg = 85 kg

-(15 kg · 10 m/s)/ 85 kg = -1.8 m/s

The velocity of the astronaut is 1.8 m/s in direction to the spacecraft.

Let´s place the origin of the frame of reference at the spacecraft. The equation of position for an object moving in a straight line at constant velocity is the following:

x = x0 + v · t

where:

x = position of the object at time t.

x0 = initial position.

v = velocity.

t = time.

Initially, the astronaut is at a distance x away from the spacecraft so that

the initial position of the astronaut, x0, is equal to x.

Since the origin of the frame of reference is located at the spacecraft, the position of the spacecraft will be 0 m.

The velocity of the astronaut is directed towards the spacecraft (the origin of the frame of reference), then, v = -1.8 m/s

The maximum time it can take the astronaut to reach the position of the spacecraft is 1.5 min = 90 s.

Then:

x = x0 + v · t

0 m = x - 1.8 m/s · 90 s

Solving for x:

1.8 m/s · 90 s = x

x = 162 m

The maximum distance the astronaut can be away from the spacecraft is 162 m.

6 0
3 years ago
What is the average speed of a boy who jogs 250 meters in 110 seconds
Ede4ka [16]

2.27 mps repeating.

This is the last question ill ever answer here. Thanks for being the last.

8 0
3 years ago
Read 2 more answers
Which sequence shows the chain of energy transfers that create surface currents on the ocean?
Papessa [141]

Answer:

The correct answer is A. The sun is the energy source of the surface currents in the ocean

6 0
2 years ago
An object of mass, m1 with a velocity, v1 collides with another object at rest (v2 = 0) with a mass, m2. After the collision, m1
goblinko [34]

Answer:

v"_{1} = v_{1} tanΘ

v^{"} _{2} = \frac{m_{1}v_{1}}{m_{2}cos}Θ

Θ = tan^{-1}(\frac{v^{"} _{1} }{v_{1} } )

Explanation:

Applying the law of conservation of momentum, we have:

Δp_{x = 0}

p_{x} = p"_{x}

m_{1}v_{1} = m_{2}v"_{2} cosΘ (Equation 1)

Δp_{y} = 0

p_{y} = p"_{y}

0 = m_{1} v"_{1} - m_{2} v"_{2} sinΘ (Equation 2)

From Equation 1:

v"_{2} = \frac{m_{1}v_{1}}{m_{2}cos}Θ

From Equation 2:

m_{2} v"_{2}sinΘ = m_{1} v_{1}

v"_{1} = \frac{m_{2} v"_{2}sinΘ}{m_{1} }

Replacing Equation 3 in Equation 4:

v"_{1}=\frac{m_{2}\frac{m_{1}v_{1}}{m_{2}cosΘ}sinΘ}{m_{1}}

v"_{1}=v_{1}\frac{sinΘ}{cosΘ}

v"_{1}=v_{1}tanΘ (Equation 5)

And we found Θ from the Equation 5:

tanΘ=\frac{v"_{1}}{v_{1}}

Θ=tan^{-1}(\frac{v"_{1}}{v_{1}})

7 0
3 years ago
Is the sun yellow or is it orange.
LiRa [457]

Answer:

But the Sun isn't actually yellow; it's just an illusion caused by the Earth's atmosphere. The powerful processes happening inside the Sun are so robust that it emits every color of light imaginable. Together, these colors form a pure white light, which is precisely what you'd see from space.

Hoped I helped

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is a fact and example of an Electron?
    10·1 answer
  • A car moving at 50 km/h skids 15 m with locked brakes. How far will the car skid with locked brakes at 150 km/h
    15·2 answers
  • Emmett is lifting a box vertically. Which forces are necessary for calculating the total force?
    11·1 answer
  • Most radiation exposure comes from
    8·2 answers
  • Why is people to come together and combine their efforts?
    14·2 answers
  • A 250 kg cart is at the top of a hill that is 32 m high, what is its potential energy?
    5·1 answer
  • 10. How much total work do you do when you lift a 50 kg microwave 1.0 m off the ground and then push it 1.0 m
    7·1 answer
  • A slanted surface used to raise an object is a(n)​
    14·1 answer
  • 4. The atmosphere is composed of about 78% nitrogen, 21% oxygen, and 1% argon. Typical atmospheric pressure in Boulder, Colorado
    9·1 answer
  • could you help with question 5. Your solutions to the word problems in volving Newton's Laws should have the following features:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!