If the moon disapared what affect would this have on earths tides:
There would no longer be any tides.
The moon is what causes the push and the pull of waves.
QUESTION: A pure jet engine propels and aircraft at 340 m/s through air at 45 kPa and -13C. The inlet diameter of this engine is 1.6 m, the compressor pressure ratio is 13, and the temperature at the turbine inlet is 557C. Determine the velocity at the exit of this engines nozzle and the thrust produced.
ANSWER: Due to the propulsion from the inlet diameter of this engine bring 1.6 m allows the compressor rations to radiate allowing thrust propultion above all velocitic rebisomes.
The magnitude of the net displacement is 95.3 m
Explanation:
To find the magnitude of the net displacement, we have to resolve each of the two displacements into the horizontal and vertical direction first.
1st displacement is:
at 
So its components are

2nd displacement is:
at 
So its components are

Therefore, the x- and y-components of the net displacement are:

Therefore, the magnitude of the final displacement is:

Learn more about displacement:
brainly.com/question/3969582
#LearnwithBrainly
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.