The characteristics of electromagnetic waves typically represent as follows:
- There are changes in the electric and magnetic fields simultaneously so that both fields have maximum and minimum values at the same time and place.
- The direction of the electric field and the magnetic field are perpendicular to each other. The direction of both is perpendicular to the direction of the wave propagation.
- The shape of electromagnetic waves is transverse waves.
- It has general wave characteristics like polarization, reflection, refraction, interference, and diffraction.
- The amount of the electric field (E) is directly proportional to the magnitude of the magnetic field, with the relationship E = cB.
- The universal constant of the velocity of electromagnetic waves in a vacuum is

- The speed at which electromagnetic waves propagate depends merely on the electrical and magnetic properties of the medium that it travels on.
- Because electromagnetic waves do not contain an electric charge, they do not experience any possible deviation in the electric or magnetic fields.
<h3>Further explanation</h3>
- Two physicists who contributed significantly to developing the concept of electromagnetic waves are Faraday and Maxwell around 1831-1864.
- From the observations, Faraday suggested that changes in the magnetic field cause an electric charge to flow in the loop of wire, contributing in the emergence of an electric field.
- Maxwell proposed a reverse process, which is a change in the electric field will generate a magnetic field.
- As follows, according to Faraday's Law, changes in sinusoidal magnetic fields generate electric fields which also change sinusoidally.
- Meantime, according to Maxwell's Hypothesis, changes in sinusoidal electric fields generate magnetic fields which also change sinusoidally.
- Furthermore, there is a process of combining electric and magnetic fields that propagate in all directions called electromagnetic waves.
<h3>Learn more </h3>
- About vector components brainly.com/question/1600633
- Determine the shortest wavelength in electron transition brainly.com/question/4986277
- Particle's speed and direction of motion brainly.com/question/2814900
Keywords: the characteristics, electromagnetic waves, transverse, vacuum, electric fields, magnetic, perpendicular, propagation, Maxwell, Faraday, the speed, polarization, reflection, refraction, interference, and diffraction
Maybe nobody ever mentioned it to you, but it turns out that
current is another one of those things that's always conserved ...
it can't created or destroyed, just like energy and mass.
The total current in a circuit is always the same, but it can get
split up and travel through different paths for a while.
<span>==> The total current is just the amount of current
that's flowing in and out of </span><span>the battery.
Diagram #1).
</span>The total current coming out of the battery is 15 A.
That current is going to split up when it reaches the resistors.
Part of it will flow through each resistor, but both of them
will still add up to 15 A .
You have 9 A flowing through one resistor.
So the current in the other resistor is (15 - 9) =<span> 6 A.
Diagram #2).
</span>The total current coming out of the battery is 10 A.
That current is going to split up when it reaches the resistors.
Part of it will flow through each resistor, but all of them
will still add up to 10 A .
You have 2.5 A through one resistor and 3.5 A through another one.
So the amount left for the last resistor is (10 - 2.5 - 3.5) =<span> 4 A.</span>
Answer:
Using 3 periods to get an accurate reading:
3T = (6.40 S - 0.90 s) = 5.50 S So, T = 1.83 s
m = 0.250 kg
Using algebra:
k=
=
=2.95kg/sec
Answer:
T₂ = 1937.68 N
Explanation:
First, we will calculate the weight of the object:

Now, we will calculate the resultant tension in the ropes. Since the ropes are perpendicular. Therefore,

where,
T = Resultant Tension
T₁ = Tension in rope 1
T₂ = Tension in rope 2
According to the given condition tension in the first rope is 2.2 times the tension in the second rope:
T₁ = 2.2 T₂
Therefore

Now, the weight of the object must be equal to the resultant tension for equilibrium:

<u>T₂ = 1937.68 N</u>
The energy needed to move an electron in a hydrogenatome from the ground state (n=1) to n=3 will be 1.93 *10^-18J and 12.09 eV.
<h3>How to compute the value?</h3>
The following can be deduced:
Energy of electron in hydrogen atom is
En = -13.6 /n2 eV
where n is principal quantum number of orbit.
Energy of electron in first orbit = E1 = -13.6 / 12 = - 13.6eV
Energy of electron in third orbit = E3 = -13.6 /32 = -1.51 eV
Energy required to move an electron fromfirst to thirdorbit ΔE = E3- E1
ΔE = -1.51 - ( 13.6) = 12.09 eV
Energy in Joule = 12.09 *l/× 1.6 × 10^-19 = 1.93 × 10^-18 J.
Learn more about energy on:
brainly.com/question/13881533
#SPJ1
Complete question:
How much energy is needed to move an electron in a hydrogenatome from the ground state (n=1) to n=3? Give theanswer (a) in joules and (b) in eV.