If l and m both are doubled then the period becomes √2*T
what is a simple pendulum?
It is the one which can be considered to be a point mass suspended from a string or rod of negligible mass.
A pendulum is a weight suspended from a pivot so that it can swing freely.
Here,
A certain frictionless simple pendulum having a length l and mass m
mass of pendulum = m
length of the pendulum = l
The period of simple pendulum is:

Where k is the constant.
Now the length and mass are doubled,
m' = 2m
l' = 2l



Hence,
If l and m both are doubled then the period becomes √2*T
Learn more about Simple Harmonic Motion here:
<u>brainly.com/question/17315536</u>
#SPJ4
The third choice is correct
Answer:
it means that velocity of a body rises by 9.8m/s each second if the air resistance is nrelated
mark me
The component of the force in negative z-direction is -0.144 N.
The given parameters;
- <em>current in the wire, I = 2.7 A</em>
- <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
- <em>magnetic filed, B = 1.24 i</em>
The force on the segment of the wire is calculated as follows;

where;
- <em>θ is the angle wire and magnetic field</em>
<em />
The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.
The angle between the wire and the magnetic field is calculated as follows;

The magnitude of the wire length is calculated as follows;

The component of the force in negative z-direction is calculated as;

Thus, the component of the force in negative z-direction is -0.144 N.
Learn more here:brainly.com/question/22719779
With acceleration

and initial velocity

the velocity at time <em>t</em> (b) is given by




We can get the position at time <em>t</em> (a) by integrating the velocity:

The particle starts at the origin, so
.



Get the coordinates at <em>t</em> = 8.00 s by evaluating
at this time:


so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).
Get the speed at <em>t</em> = 8.00 s by evaluating
at the same time:


This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:
