Answer:
The acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
Explanation:
given information:
h =9.8
t =1 s
g = 9.8
the average speed
v = 1/2 gt²
= 1/2 (9.8) (1)²
= 4.8 m/s
the distance in 1s
h = v t
= 4.8 (1)
= 4.8 m
the acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
=
Answer:
c. detecting the gravitational effect of an orbiting planet (The Wobble"") by looking for the Doppler shifts in the star's spectrum
Explanation:
In a solar system the mass of the star and planets affect each other's orbital movements. The center of gravity of a star and a planet is inside the star. This causes the star to be closer and farther from the Earth at different times. Due to this wobble the star appears to be red shifted when it is farther and blue shifted when it is closer.
When the mass of the planet is high, like a hot Jupiter it causes more wobble i.e., change in radial velocity. This makes it easier to detect the planet. The earliest hot Jupiter found by this method is the planet 51 Pegasi b.
Answer:
Her speed is 1.1 m/s, and her velocity is 0 m/s
Explanation:
Speed = Distance covered/Time
Given
Distance = 400m
Time = 6minutes = 6*60 = 360 secs
Substitute the given parameter into the formula;
Speed = 400/360
Speed = 1.1m/s
Since the track is a circular track, the displacement will be zero. She is only moving in a circular path (no direction)
Velocity = Displacement/Time
Velocity = 0/3600
Velocity = 0m/s
Hence her speed is 1.1 m/s, and her velocity is 0 m/s
I believe it’s (D. Any object)
Answer:
(a) A = m/s^3, B = m/s.
(b) dx/dt = m/s.
Explanation:
(a)

Therefore, the dimension of A is m/s^3, and of B is m/s in order to satisfy the above equation.
(b) 
This makes sense, because the position function has a unit of 'm'. The derivative of the position function is velocity, and its unit is m/s.