Answer:
Current in outer circle will be 15.826 A
Explanation:
We have given number of turns in inner coil 
Radius of inner circle 
Current in the inner circle 
Number of turns in outer circle 
Radius of outer circle 
We have to find the current in outer circle so that net magnetic field will zero
For net magnetic field current must be in opposite direction as in inner circle
We know that magnetic field is given due to circular coil is given by

For net magnetic field zero

So 

Answer:
it makes the object speed increase, decrease and change the direction of the object.
Hope it helps!
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
I think the answer is c chemical change
Each hour 430 quintillion Joules of energy from the sun hits the Earth.
In a year it is very hard to determine because of the night and different light levels.