The object will move if the forces are unbalanced.
Newtons second tells you that when a net force (the unbalanced force) is applied to and object it will produce an acceleration (movement) in direct proportion to the force and in inverse proportion to the mass of the object.
Answer:
a) Linear equation
Explanation:
Definition of acceleration

if a=constant and we integrate the last equation

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.
Answer:
Explanation:
= 4190 J/kg.K
= 910 J/Kg. K
= 1.50 kg
= 1.80 kg

ΔT +
ΔT
= (1.50)(910)(85.0-20)+(1.80)(4190)(85.0-20)
= 578,955 J
= 579 kJ
Answer: - 25.2 kgm/s
Explanation: The mass of the ball is 0.5kg, and the initial velocity = 10.6m/s.
The final velocity is in opposite direction of the initial hence final velocity (v) = - 19.9 m/s
Impulse = change in momentum = final momentum - initial momentum.
Final momentum = mass × final velocity
Final momentum = - 19.9 × 0.5
Final momentum = - 9.95 kgm/s
Initial momentum = mass × initial velocity
Initial momentum = 0.5 × 10.6 = 5.3kgm/s
Change in momentum = final momentum - initial momentum = - 19.9 - 5.3
Change in momentum = - 25.2 kgm/s
The negative sign implies that the change in momentum is the opposite direction relative to the first.
For Ethernet, if an adapter determines that a frame it has just received is addressed to a different adapter
a. it discards the frame without sending an error message to the network layer
b. it sends a NACK (not acknowledged frame) to the sending host
c. it delivers the frame to the network layer, and lets the network layer decide what to do
d. it discards the frame and sends an error message to the network layer
Answer:
Option A
Explanation:
The nodal address has to match the signal message address for it to function well but if the it doesn't match the nodal receiver address, it disregards it.