Average atomic mass of an element is a sum of the product of the isotope mass and its relative abundance.
For example: Chlorine has 2 isotopes with the following abundances
Cl(35): Atomic mass = 34.9688 amu; Abundance = 75.78%
Cl(37): Atomic mass = 36.9659 amu; Abundance = 24.22 %
Average atomic mass of Cl = 34.9688(0.7578) + 36.9659(0.2422) =
= 26.4993 + 8.9531 = 35.4524 amu
Thus, the term “ average atomic mass “ is a <u>weighted</u> average so it is calculated differently from a normal average
Answer:
John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? xdsz.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts?
Explanation:
I will assume that the sign ? between the C and the CCH3 is a triple bond, and I will represent it by three vertical lines |||
So the reaction is:
<span>CH3CH2CH2CH2C ||| CCH3+2Br2 ---->
This is a typical reaction known as halogenation of alkines.
This is an addition reaction, i.e. the alkyne undergoes an addition of the Br2 (and it also happens with Cl2) to the triple bond to form a tetra halide.
.
Br Br
</span> | |
<span><span>CH3CH2CH2CH2C ||| CCH3+2Br2 ----> CH3 CH2 CH2 CH2 C - C</span> - CH3
| |
Br Br
</span>
140 s. It would take 140 s to swim 0.150 mi
.
<em>Step 1</em>. Convert the <em>time to seconds</em>
Time = 14 min × (60 s/1 min) + 34.56 s = 840 s + 34.56 s = 874.56 s
<em>Step 2</em>. Convert <em>miles to metres
</em>
Distance = 0.150 mi × (1609.3 m/1 mi) = 241.4 m
<em>Step 3.</em> Calculate the <em>time to swim 241.4 m</em>
Time = 241.4 m × (874.56 s/1500 m) = 140 s
(<em>As of 2012, the men’s freestyle record for 1500 m was 14:31.02</em>.)