Answer: 4*p=8
Step-by-step explanation:
<em>You can use inverse operation to answer this equation.</em>
- <em>write out you problem: 4 x p =8</em>
- <em>The inverse of multiplication is division</em>
- <em>you do 4/4 which gives you one but the 4 will cancel itself out</em>
- <em>Do 8/4 which gives you 2</em>
- <em>under the equation write p = 2</em>
- <em>And be sure to line the p up with the p, the equal sign with the equal sign, and the 2 stays where it is ( which should be already lined up with the 8)</em>
Answer:
a) 84π b) 109.2π
Step-by-step explanation:
The formula to find this is v=πr^2h/3
r=d/2. so the radius (r) is 6 because you have to divide the diameter (12) by 2. and the height is 7. so, 6^2=36 and 36x7=252.
252/3=84
and because the question is asking for the EXACT value, you need to just put the pi symbol next to it. Final answer for a is 84π
B) you need to find 30% of 84, which is 25.2 and add it to 84, and you will get 109.2! Final answer is 109.2π.
100% = Certain (no matter what.. it's going to happen)
75/100 = Likely (has a high chance of happening)
5/10 = Equally likely (can happen, or might not)
1/4 = Unlikely (might not happen)
0.0 = Impossible
hope this helps
Answer:
$3.51
Step-by-step explanation:
1 pound is $2.39 so divide by 2 and round up to the nearest whole number which is $1.12. Add $1.12(The cost of 0.5 pounds) to $2.39(The cost of 1 pound) to get $3.51 as your total.
Answer:
a) So, this integral is convergent.
b) So, this integral is divergent.
c) So, this integral is divergent.
Step-by-step explanation:
We calculate the next integrals:
a)
![\int_1^{\infty} e^{-2x} dx=\left[-\frac{e^{-2x}}{2}\right]_1^{\infty}\\\\\int_1^{\infty} e^{-2x} dx=-\frac{e^{-\infty}}{2}+\frac{e^{-2}}{2}\\\\\int_1^{\infty} e^{-2x} dx=\frac{e^{-2}}{2}\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cleft%5B-%5Cfrac%7Be%5E%7B-2x%7D%7D%7B2%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D-%5Cfrac%7Be%5E%7B-%5Cinfty%7D%7D%7B2%7D%2B%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C)
So, this integral is convergent.
b)
![\int_1^{2}\frac{dz}{(z-1)^2}=\left[-\frac{1}{z-1}\right]_1^2\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\frac{1}{1-1}+\frac{1}{2-1}\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D%5Cleft%5B-%5Cfrac%7B1%7D%7Bz-1%7D%5Cright%5D_1%5E2%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cfrac%7B1%7D%7B1-1%7D%2B%5Cfrac%7B1%7D%7B2-1%7D%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cinfty%5C%5C)
So, this integral is divergent.
c)
![\int_1^{\infty} \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_1^{\infty}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=2\sqrt{\infty}-2\sqrt{1}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cleft%5B2%5Csqrt%7Bx%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D2%5Csqrt%7B%5Cinfty%7D-2%5Csqrt%7B1%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cinfty%5C%5C)
So, this integral is divergent.