Answer:
The type of bonding found in sodium chloride is called ionic bonding.
Explanation:
Ionic bonding is the attraction between two atoms with opposite charges. In sodium chloride, sodium has a positive charge and chlorine has a negative charge; therefore, they attract one another and form a bond.
Answer:
4 atoms of oxygen.
Explanation:
The given equation is :

Here Fe and O₂ are reactants and Fe₂O₃ is a product. It is a balanced chemical reaction in which the number of atoms on LHS are equal to number of atoms on RHS.
4 atoms of iron react with 3 atoms of oxygen to form iron oxide. Hence, there are 4 atoms of reactants in this equation.
Answer:
14.57g
Explanation:
Given parameters:
Mass of dish + ball = 15.6g
Initial volume of water in the cylinder = 26.7mL
Final volume of water in the cylinder = 38.9mL
Mass of dish = ?
Unknown
Mass of the ball = ?
Solution;
Since the mass of ball and dish is 15.6g,
Mass of the ball =Mass of ball + dish - mass of the dish
Insert the parameters and solve;
Mass of the ball = 15.6g - 1.03g = 14.57g
Answer:
The one that's highlighted in blue is the answer
The given question is incomplete. The complete question is
If 1.0 M HI is placed into a closed container and the reaction is allowed to reach equilibrium at 25∘C∘C, what is the equilibrium concentration of H2 (g). Given the equilibrium constant is 62.
Answer: The equilibrium concentration of
is 0.498 M
Explanation:
Initial concentration of
= 1.0 M
The given balanced equilibrium reaction is,

initial (1.0) M 0 0
At eqm (1.0-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2]\times [I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
Now put all the given values in this expression, we get :

By solving we get :

Thus the equilibrium concentration of
is 0.498 M