Answer:
The maximum temperature rise = 0.047 °C
Explanation:
Potential Energy, P = mgh
Energy transfered, Q=mcΔT
Potential energy = Energy transfered
mgh = mcΔT
gh = cΔT
ΔT = gh/c
ΔT = (9.81 * 20) / 4186
ΔT = 0.047 °C
To calculate the speed and velocity of the Ann`s we use the formula,

Here, d is distance and t is time and v if we take it with direction then it is called velocity and if we take it without the direction then it is called speed.
Given
and
.
Substituting these values in above equation we get

As Ann walked towards south direction therefore, Ann`s velocity is 3 mi/h south and her speed is 3 mi/h .
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
0.75 g/cm^3
Explanation:
The formula for density:

Where m is the mass and V is the volume.
So, we can substitute values for m and V:

Therefore, the density is 0.75 g/cm^3 (watch the units!)