Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Answer:
B. 6
Explanation:
i think... im in 7th grade and haven't really leaned this but im like 60% sure but i migjt be wrong
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
The feel of weight comes due to the normal reaction force given by the support. Hence, the condition of weightlessness is when the normal reaction force becomes zero. So, during free fall there is no support which can provide the normal reaction. Hence, the bungee jumper feels weightless as she falls towards the earth because of the lack of support force that balances gravity.
Hence, the answer is 3.