Here, you need to use your "Protractor" as it is given in the question, but we can calculate the value with the help of our mathematical calculation too:
[ Protractor can be use only in real life, not here ]
Draw an imaginary line from initial position to final position.
Now, In that triangle, tan x = P/B
tan x = 1.4 / 2
tan x = 0.70
x = tan⁻¹ (0.70)
x = 35 [ tan 35 = 0.70 ]
In short, Your Answer would be 35 degrees
Hope this helps!
<h3><u>
Answer;</u></h3>
B) Not Balanced
B) Sodium
B) Not Equal
The equation is <em><u>not balanced</u></em> because the number of <em><u>sodium atoms</u></em> is <em><u>not equal</u></em> on both sides of the arrow.
<h3><u>Explanation;</u></h3>
- <em><u>According to the law of conservation of mass, the mass of reactants should always be the same as the mass of the products in a chemical equation.</u></em> Therefore, the number of atoms of each element in a chemical equation should always be the same on both sides of the equation, that is the side of reactants and side of products.
- Therefore,<u><em>any chemical equation requires balancing to ensure that the number of atoms of each element is equal in both sides of the equation</em></u>. Balancing is a try and error process that ensures that the law of conservation of mass holds.
- Thus, the balanced chemical equation is;
2Na + Cl2 → 2NaCl
Answer:
The distance that you marginally able to discern that there are two headlights rather than a single light source is 6.084 km
Explanation:
Given:
d = distance = 0.679 m
λ = wavelength of the light = 537 nm = 537x10⁻⁹m
dp = pupil diameter = 4.81 mm = 0.00481 m
Question: What distance, in kilometers, are you marginally able to discern that there are two headlights rather than a single light source, dx = ?
For the separation of the peak from the central maximum it is:

In this case, the two small sources of the headlights have the same angle as the images that form inside the eye

Answer:
14.2
Explanation:
find horizontal force of the weight = 2.5kg x 9.8 Sin30 = 12.3 N
to prevent the sliding she needs to pull horizontally
Fh = 12.3 /Cos 30 =14.2N
So if the formula for work is force times displacement times cosine(theta), you'd plug in the numbers
100x5 (since there's no angle in the problem, cosine(theta) isn't used
100x5 = 500
So the answer would be B.
Hope that helps!