Answer:
5235.84 kg
Explanation:
There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.
As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh,
;

<span>electric, solar, wind, and geothermal.</span>
The law<span> of conservation of mass applies in all </span><span>chemical equations</span>
Answer:
Explanation:
The experimenter is rotating on his stool with angular velocity ω ( suppose )
His moment of inertia is I say
We are applying no torque from outside . therefore , the angular momentum will remain the same
Thus angular momentum L = I ω = constant
Thus we can say I₁ ω₁ = I₂ω₂ = constant
here I₁ is the initial moment of inertia and ω₁ is the initial angular velocity
Similarly I₂ is the final moment of inertia and ω₂ is the final angular velocity
When a been bag is dropped on his lap , his moment of inertia increases due to increase in mass
In the above equation, when moment of inertia increases , the angular velocity decreases . So its motion of rotation will decrease .