Answer:
Given:
Distance = 35200 miles, time = 2 hr.
So we know = 35200/ 2, = 17600 miles / hr.
By using Ohm's law, we can find what should be the resistance of the wire, R:

Then, let's find the cross-sectional area of the wire. Its radius is half the diameter,

So the area is

And by using the resistivity of the Aluminum,

, we can use the relationship between resistance R and resistivity:

to find L, the length of the wire:
Answer:
The answer is 1.87nm/s.
Explanation:
The
water loss must be replaced by
of sap. 110g of sap corresponds to a volume of

thus rate of sap replacement is

The volume of sap in the vessel of length
is
,
where
is the cross sectional area of the vessel.
For 2000 such vessels, the volume is

taking the derivative of both sides we get:

on the left-hand-side
is the velocity
of the sap, and on right-hand-side
; therefore,

and since the cross-sectional area is
;
therefore,

solving for
we get:


which is the upward speed of the sap in each vessel.
Answer:
A. Both spheres land at the same time.
Explanation:
The horizontal motion doesn't affect the vertical motion. Since the two spheres have the same initial vertical velocity and same initial height, they land at the same time.
<u>Answer:</u>
First, the thermometer is dipped into boiling water, and the mercury inside the thermometer rises to a high level, called the boiling point. This level is then marked as 100°C. The thermometer is then dipped into melting ice, which causes the mercury level to fall to a point called the ice point. This point is then marked as 0°C. The length of the thermometer from the 0°C mark to the 100°C point is then divided into 100 equal sections, and the rest of the levels are marked accordingly.