A <span>Compound has a definte ratio of components</span>
If your wanting to know how to talk to them, just act like you know them really well be very causal and be confident in what you say, they also like it when you make the first move to talk to them
Answer:
8.42Joules
Explanation:
The rotational kinetic energy, denoted by E(rotational), can be calculated using the formula:
E(rotational) = 1/2 × I × ω²
Where;
I = moment of inertia (kgm²)
ω = angular velocity (rad/s)
However, we need to calculate the moment of inertia in this question by using the formula:
I = m × r²
Where;
m = mass (1.3kg)
r = radius (0.6m)
I = 1.3 × 0.6²
I = 1.3 × 0.36
I = 0.468 kgm²
Since I = 0.468 kgm², ω = 6 rad/s, we can calculate rational kinetic energy using:
K.E(rotational) = 1/2 × I × ω²
K.E(rotational) = 1/2 × 0.468 × 6²
K.E(rotational) =1/2 × 0.468 × 36
K.E(rotational) = 18 × 0.468
K.E(rotational) = 8.424
K.E(rotational) = 8.42Joules
Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c