OzsnuhgnowgnwrfoqingoiwrgWWR KEFQF QEFI FBI O8QE VU F8EINFOQIHWJ OU JN K kjbJ IUJ j osd sfljvbwj 9 oirs jf bhfb wjsf jfow vj isfobsfjb io jio ofsjb
D. Mineral and fossil matches from tests done on different continents.
Answer:
meter, kilogram
Explanation:
Here we want to know how big the tiger is. This means that we want to measure its size and possibly its mass.
The size is actually a measure of the length of the tiger, and length is measured in meters.
The mass of an object, instead, is a measure of the "amount of matter" in the substance, and it is measured in kilograms.
The other options are wrong because:
- The second is the unit of time
- The candela is the unit of the luminous intensity
- The mole is the unit of the amount of substance, and it is used for gases
- The ampere is the unit of the current
Answer:
ok confusion but we could figure it out right
Explanation:
<h3>dhdjhdndnd but its fine how was your day tho </h3>
Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>