When a car is slowing down, it has a negative acceleration. Although it is not going a negative speed, it is decreasing in velocity, which is the definition of a negative acceleration.
Hope this helps!
Answer:
r = 5,085 m
Explanation:
The force exerted by on the surface of the Earth on an electron is its weight
W = F = 9.11 10⁻³¹ 9.8
W = 8.9 10⁻³⁰ N
The electric force between an electron and a proton is given by Coulomb's Law
Fe = k q₁ q₂ / r²
Fe = - k q² / r²
They ask us that W = Fe
W = k q² / r²
r = √ k q² / W
Let's calculate
r = √ 8.99 10⁹ (1.6 10⁻¹⁹)² /8.9 10⁻³⁰
r = √ 25.86
r = 5,085 m
Let's look for the relationship of this distance with the harmonic distance
R / R_atomic = 5,085 / 10⁻¹⁰
R / R_Atomic = 5 10¹⁰
We see that this distance is 10¹⁰ times the interatomic distance, so the gravitational attraction force is very small at atomic scale
Answer:
The back end of the vessel will pass the pier at 4.83 m/s
Explanation:
This is purely a kinetics question (assuming we're ignoring drag and other forces) so the weight of the boat doesn't matter. We're given:
Δd = 315.5 m
vi = 2.10 m/s
a = 0.03 m/s^2
vf = ?
The kinetics equation that incorporates all these variables is:
vf^2 = vi^2 + 2aΔd
vf = √(2.1^2 + 2(0.03)(315.5))
vf = 4.83 m/s
The larger the mass the mass and the speed, the larger the force it would produce if it crashes something. Some car crashes produce minor injuries because maybe this car is small and runs at very slow speed which would mean less force when in impact with another. However, if a big truck crashes, it is expected to produce a larger force causing catastrophic injuries.
Try and multiply A only and leave B and X alone (constant) try a number like 2