We know that to relate solutions of with the factors of molarity and volume, we can use the equation:

**
NOTE: The volume as indicated in this question is defined in L, not mL, so that conversion must be made. However it is 1000 mL = 1 L.
So now we can assign values to these variables. Let us say that the 18 M

is the left side of the equation. Then we have:

We can then solve for

:

and

or

We now know that the total amount of volume of the 4.35 M solution will be
210 mL. This is assuming that the entirety of the 50 mL of 18 M is used and the rest (160 mL) of water is then added.
Answer:
Molecular formula: S4K8O16 empirical formula: SK2O4
Explanation:
First we find the moles of each by first finding grams (using the percent) and then using stoichiometry to convert into moles:
Sulfur: 696 *.18 = 125.28grams S* 
Potassium: 696 *.4487 = 312.2952 *
= 7.99117 mole K
Oxygen: 696 * .367 = 255.432 *
= 15.9654 mole O
Then we divide each value by the atom with the smallest number of moles to find the mole ratio:
3.907/3.907= 1
7.99117 mole K/ 3.907= 2.043
15.9654 mole O/ 3.907= 4.08
The empirical formula is SK2O4
To find the molecular formula, we divide the mass given (696) by the mass of the empirical formula (174.22) to get 4. We then divide each atom by 4.
Molecular formula: S4K8O16
The answer is Br₂ since catalysts are regenerated at the end of a reaction.
Answer:
The name of the phase change is;
Sublimation.
Explanation:
CO₂(s) + energy ⇒ CO₂(g)
Sublimation is the transition of a substance from its solid state to the gaseous state without first turning to a liquid due the high rate of absorption of of thermal energy of the substance such that the substance does not melt first.
As such sublimation is the endothermic process taking place at a temperature and pressure lower than the triple point of the substance in the substance's phase diagram. The triple point is the lowest temperature and pressure at which a substance can exist as a liquid.