Answer : The hydroxide ion concentration of a solution is, 
Explanation :
As we know that
dissociates in water to give hydrogen ion
and carbonate ion
.
As, 1 mole of
dissociates to give 1 mole of hydrogen ion 
Or, 1 M of
dissociates to give 1 M of hydrogen ion 
So, 0.200 M of
dissociates to give 0.200 M of hydrogen ion 
Now we have to calculate the hydroxide ion concentration.
As we know that:
![[H^+][OH^-]=1\times 10^{-14}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%5BOH%5E-%5D%3D1%5Ctimes%2010%5E%7B-14%7D)
![0.200\times [OH^-]=1\times 10^{-14}](https://tex.z-dn.net/?f=0.200%5Ctimes%20%5BOH%5E-%5D%3D1%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=5\times 10^{-14}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D5%5Ctimes%2010%5E%7B-14%7D)
Therefore, the hydroxide ion concentration of a solution is, 
Incresing Pressure will increases the amount of gas dissolved !!
so your answer is B !!
Extra : Cool example is Pepsi or coke !! CO2 is dissolved by high pressure
Answer is: dispersion forces.
The London dispersion force is the weakest intermolecular force.
Dispersion force is also called an induced dipole-induced dipole attraction.
The London dispersion force (intermolecular force) is a temporary attractive force between molecules.
The dipole beetween iodine and bromine is weak.
The crust is the outside layer and also the thinnest.