Answer:
1367.7 g of ethylene glycol was added to the solution
Explanation:
In order to find out the mass of glycol we added, we apply the colligative property of lowering vapor pressure: ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution(P')
525.8 mmHg - 451 mmHg = 451 mmHg . Xm
74.8 mmHg / 451 mmHg = Xm → 0.166 (mole fraction of solute)
Xm = Mole fraction of solute / Moles of solute + Moles of solvent
We can determine the moles of solvent → 2000 g . 1 mol/18 g = 111.1 mol
(Notice we converted the 2kg of water to g)
0.166 = Moles of solute / Moles of solute + 111.1 moles of solvent
0.166 (Moles of solute + 111.1 moles of solvent) = Moles of solute
18.4 moles = Moles of solute - 0.166 moles of solute
18.4 = 0.834 moles of solute → Moles of solute = 18.4/0.834 = 22.06 moles
Let's convert the moles to mass → 62 g/mol . 22.06 mol = 1367.7 g
When a solute is completely dissolved in a solvent, a solution is formed.
Answer:
As electro-negativity decreases from Florine to downwards in the group and only Florine is above Chlorine, so Florine should react with sodium chloride solution to produce chlorine.
mark me brinilylist pls
Yes when a firework goes into the sky it releases chemical potential energy which is then changed into kinetic energy