1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
7

Why are the alkali metals likely to react with group 17 elements?

Physics
1 answer:
Rudiy273 years ago
7 0

Answer:

Because alkali metals are so reactive, they are found in nature only in combination with other elements. They often combine with group 17 elements, which are very “eager” to gain an electron.

Explanation:

hope this helps you if it does please mark brainliest

You might be interested in
A student traveling at 8m/s on a bike has a mass of 182 KG and collides into a boulder and comes to a abrupt halt in 0.08 second
Delicious77 [7]
I hope this helps u !!

8 0
3 years ago
A bus traveling at 24 m/s slows down to 12 m/s in 5.0 seconds. What is the acceleration?
Contact [7]

Answer:

a = -2.4 m/s²

Explanation:

Given,

The initial speed of the bus, u = 24 m/s

The final speed of bus, v = 12 m/s

Time taken to reach final speed is, t = 5.0 s

The acceleration of the body is given by the change in velocity by time

                                      a = (v - u) / t

                                         = (12 - 24) / 5

                                         = -2.4 m/s²

The negative sign in the acceleration indicates that the bus is decelerating.

Therefore, the acceleration of the bus is, a = -2.4 m/s²

8 0
3 years ago
So far, you’ve been working with an "ideal" pulley system. How do you think real pulley systems are different, and how would tha
almond37 [142]

Answer:

In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component

However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy

Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system

The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Efficiency \, \% = \dfrac{AMA}{IMA}  \times 100

Explanation:

8 0
3 years ago
Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
mariarad [96]

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

7 0
3 years ago
Where can classic examples of shield volcanoes be found?
Darina [25.2K]
The largest is Mauna Loa on the Big Island of Hawaii; all the volcanoes in the Hawaiian Islands are shield volcanoes. There are also shield volcanoes, for example, in Washington, Oregon, and the Galapagos Islands
4 0
3 years ago
Other questions:
  • The motion of an object parallel to the earth's surface is
    12·1 answer
  • A person pours 330 g of water at 55°C into an 855-g aluminum container with an initial temperature of 10°C. The specific heat of
    14·1 answer
  • A theory was not originally a hypothesis. true or false?
    7·1 answer
  • The seatbelt across your chest should have about ________ fist width of slack.
    5·1 answer
  • A camcorder has a power rating of 13 watts. If the output voltage from its battery is 6 volts, what current does it use?
    9·1 answer
  • Tension is actually a force that tends to
    7·2 answers
  • A laser pointer is placed on a platform that rotates at a rate of 60 revolutions per minute. The beam hits a wall 10 m away, pro
    15·1 answer
  • State Newton’s law of universal gravitation in words. Then do the same with one equation
    5·1 answer
  • An archer fires an arrow at an angle of 9° above the horizontal with a resultant velocity of 24 m/s
    11·1 answer
  • Which of the following changes would not lead to changes in the efficiency of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!