Answer:
hello your question is incomplete attached below is the complete question
answer :
20.16 v
Explanation:
The reading of the voltmeter at the instant the switch returns to position a
L = 5H
i ( current through inductor ) = 1/L ∫ V(t) d(t) + Vo
= 1/5 ∫ 3*10^-3 d(t) + 0 = 0.6 * 10^-3 t
iL ( 1.6 s ) = 0.6 * 10^-3 * 1.6 = 0.96 mA
Rm ( resistance ) = 21 * 1000 = 21 kΩ
The reading of the voltmeter ( V )
V = IR
= 0.96 mA * 21 k Ω = 20.16 v
Answer:
Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Explanation:
Hope this helps:)
Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
Answer:
no it can not effect the speed of sound not shure tho