Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Answer: Benzaldahyde
Explanation: the C₆H₅- represents the substituted benzene ring and the
CHO should represent the functional group of aldehyde
Answer:
if an object weighs more than an equal volume of water, it is more dense and will sink, and if it weighs less than an equal volume of water, it is less dense and will float.
Explanation:
Hope that helps
Photosynethesis, respiration, and combustion.
Answer: a. 0.26mol
b. 0.000479mol
c. 1.12mol
Explanation: Please see attachment for explanation