Answer:
The friction force acting on the object is 7.84 N
Explanation:
Given;
mass of object, m = 4 kg
coefficient of kinetic friction, μk = 0.2
The friction force acting on the object is calculated as;
F = μkN
F = μkmg
where;
F is the frictional force
m is the mass of the object
g is the acceleration due to gravity
F = 0.2 x 4 x 9.8
F = 7.84 N
Therefore, the friction force acting on the object is 7.84 N
An impulsive force is a force that is acting only during a short time, I mean, for an instant. Impulse is a physics magnitude define by the product of the impulsive force and the time that it was acting.
Is there any mistake in my English? Please, let me know.
Answer:
(a) 7.72×10⁵ J
(b) 4000 J
(c) 1.82×10⁻¹⁶ J
Explanation:
Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,
Ek = 1/2mv²................... Equation 1
Where Ek = Kinetic energy, m = mass, v = velocity
(a)
For a moving automobile,
Ek = 1/2mv².
Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s
Substitute into equation 1
Ek = 1/2(2.0×10³)(27.78²)
Ek = 7.72×10⁵ J
(b)
For a sprinting runner,
Given: m = 80 kg, v = 10 m/s
Substitute into equation 1 above,
Ek = 1/2(80)(10²)
Ek = 40(100)
Ek = 4000 J
(c)
For a moving electron,
Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s
Substitute into equation 1 above,
Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²
Ek = 1.82×10⁻¹⁶ J
Answer:
Mechanical energy
Explanation:
Mechanical energy is needed for movement of objects. Muscles convert chemical energy provided by the rest of the body to allow movement.
3 hours, because for every 50 km equals one hour 150 divided into 50 equals 3