Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
I'm not sure what your question is. But, the half life is the amount of time required for half the material to decay. For U238 this is 4.5 billion years, whilst for Fr-223 (Francium) its about 22 minutes. To calculate the time for something to decay you need to use the equation:
Mass (after time t) = Mass (initial) * (0.5)^(time/half life)
Hope this helps
Answer:
opposite the sun. between the Earth and the sun. rising perpendicular to the sun.
Explanation:
Answer:
Explanation:
Let the velocity of projectile be v and angle of throw be θ.
The projectile takes 5 s to touch the ground during which period it falls vertically by 100 m
considering its vertical displacement
h = - ut +1/2 g t²
100 = - vsinθ x 5 + .5 x 9.8 x 5²
5vsinθ = 222.5
vsinθ = 44.5
It covers 160 horizontally in 5 s
vcosθ x 5 = 160
v cosθ = 32
squaring and adding
v²sin²θ +v² cos²θ = 44.4² + 32²
v² = 1971.36 + 1024
v = 54.73 m /s