Answer:
Explanation:
Since the equation for the illumination of an object, i.e. the brightness of the light, is <em>inversely proportional to the square of the distance from the light source</em>, the form of the function is:
Where x is the distance between the object and the light force, k is the constant of proportionality, and f(x) is the brightness.
Then, if you move halfway to the lamp the new distance is x/2 and the new brightness (call if F) is :

Then, you have found that the light is 4 times as bright as it originally was.
Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .
Answer:
Another term for free enterprise system would be capitalism
Uranus takes 84 earth years to make a full rotation around the sun<span />