Answer:
kinetic energy
Explanation:
A wind turbine transforms the mechanical energy of wind into electrical energy. A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator
Answer:
Conduction
Explanation:
When one object touches another heat moves through it (think of a saucepan on a hot stove). Aluminium foil is a great conductor of heat, which means it is a poor insulator when it is in direct contact with something hot.
Answer:
Explanation:
From the given information:
The initial PE
= m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = 
ΔP.E = 0 -
ΔP.E = 
If we take a look at conservation of total energy for determining the change in the internal energy of the box;


this can be re-written as:

Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,


ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
Answer:
424.26 m/s
Explanation:
Given that Two air craft P and Q are flying at the same speed 300m/s. The direction along which P is flying is at right angles to the direction along which Q is flying. Find the magnitude of velocity of the air craft P relative to air craft Q
The relative speed will be calculated by using pythagorean theorem
Relative speed = sqrt(300^2 + 300^2)
Relative speed = sqrt( 180000 )
Relative speed = 424.26 m/s
Therefore, the magnitude of velocity of the air craft P relative to air craft Q is 424.26 m/s
Answer:
Momentum, p = 5 kg-m/s
Explanation:
The magnitude of the momentum of an object is the product of its mass m and speed v i.e.
p = m v
Mass, m = 3 kg
Velocity, v = 1.5 m/s
So, momentum of this object is given by :

p = 4.5 kg-m/s
or
p = 5 kg-m/s
So, the magnitude of momentum is 5 kg-m/s. Hence, this is the required solution.