Answer:

Explanation:
The 4 wires are connected in series: this means that the same current flow through them, and the voltage of the battery, V0, is equal to the sum of the voltages on each individual resistor:

Also, the equivalent resistance of the series circuit is

The voltage V2 across wire 2 is given by Ohm's law:
(1)
where I is the total current in the circuit, which is given by:

Substituting this into eq. (1), we find an expression for V2:

Answer:
Therefore the resistance of the air makes the movement not parabolic but shorter in each direction
Explanation:
The projectile motion is described by the kinematics equations giving a parabolic trajectory, where on the x axis there is no acceleration and on the y axis the acceleration is the acceleration of gravity.
When the air resistance is taken into account it can be approximated as a force that opposes the movement that for low speeds is proportional to the speed of the space.
Consequently, the movement in the axis and the acceleration is less, in some cases it can be so small that the constant handle speed, in this case, is called terminal velocity.
On the x-axis the friction force creates an acceleration in the negative direction of the movement that the projectile has to brake.
Therefore the resistance of the air makes the movement not parabolic but shorter in each direction.
That is an opinion. Opinion is not fact, although it can be based upon fact.
<span>Electric
current passes through a filament of an incandescent bulb, thereby increasing
it temperature. When current flows, it contains electrons through the filament
to produce light. The answer is c. Typically, incandescent light bulb consists
of a glass enclosure that contains tungsten filament. The glass enclosure contains
either a vacuum or an inert gas that serves as the filament protection from
evaporating. Incandescent light bulbs contain a stem attached at to its base to
allow the electrical contacts to run through the envelope without gas or air
leaks</span>
Answer:
u=36.8m/s
Explanation:
because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations
u^2=v^2-2ā*s. where:
u^2 stands for intial velocity
v^2 stands for final velocity
since the cougar skidded to a complete stop the final velocity is zero.
u^2=v^2-2ā*s
u^2=(0)^2 -2(-2.87 m/s^2)*236 m
u^2=0+5.74m/s^2* 236m
u^2=1354.64m^2/s^2
u=√1354.64m^2/s^2
u=36.8m/s (approximate value)
when ever the acceleration is constant you can use one of the following equation to find the required value.
1. v = u + at. (no s)
2. s= 1/2(u+v)t. (no ā)
3. s=ut + 1/2at^2. ( no v)
4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)