Answer:
47 m/s
Explanation:
golf club mass, mc = 180 g
golf ball mass, mb = 46 g
initial golf club speed, vc1 = 47 m/s
final golf club speed, vc2 = 35 m/s
initial golf ball speed, vb1 = 0 m/s
final golf ball speed, vb2 = ? m/s
The total momentum is conserved, then:
mc*vc1 + mb*vb1 = mc*vc2 + mb*vb2
Replacing with data and solving (dimension are omitted):
180*47 + 46*0 = 180*35 + 46*vb2
vb2 = (180*47 - 180*35)/46
vb2 = 47 m/s
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
A compound Machine is 2 machines that work together in order to make a task easier.
Answer: You could dissolve it by heating it back up, then just cooling it down again.
Hope that helps!
The force exerted by the magnetic in terms of the magnetic field is,

Where B is the magnetic fied strength and F is the force.
Thus, if the magnetic A has twice magnetic field strength than the magnet B,
Then,

Thus, the force exerted by the magnet B is,

Thus, the force exerted by the magnet B on magnet A is 50 N.
The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.
Hence, the option B is the correct answer.