Answer:Non-covalent bonds
Explanation:
The Non-covalent bonds are bonds such as van der Waals forces of attraction, the Hydrogen bonds, hydrophobic bonds and so on. The Non-covalent bonds are very important types of bonding in large biological molecules.
Just like the question says, the Non-covalent bonds, ''makes it possible for a macromolecule to interact with great specificity with just one out of the many thousands of different molecules present inside a cell".
Ionic bonding is also a Non-covalent bonding. They(Non-covalent bonds) helps in the stability of large macromolecules.
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Answer:
In summary, work is done when a force acts upon an object to cause a displacement. Three quantities must be known in order to calculate the amount of work. Those three quantities are force, displacement and the angle between the force and the displacement.
10H₂ + 5O₂ → 10H₂O
Explanation:
This problem deals with balancing of chemical equations. In balancing chemical equations, the law of conservation of mass must be followed. This states that:
"In a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
This meaning of this is that; the number of atoms on each side of the expression must be the same.
2H₂ + O₂ → 2H₂O
let us check is the equation above is balanced;
2H₂ + O₂ → 2H₂O
Elements reactant product
H 4 4
O 2 2
We can see vividly that the equation is balanced;
Now; if we have 5 oxygen gas, we multiply the equation through by 5:
5 x ( 2H₂ + O₂ → 2H₂O )
⇒ 10H₂ + 5O₂ → 10H₂O
Elements reactant product
H 20 20
O 10 10
learn more:
Balanced equation brainly.com/question/11102790
#learnwithBrainly
From the reduction standard potentials;
The emf of Zinc = -0.76 V
and the emf of Aluminium = -1.66 V
In a galvanic cell the component with lower standard reduction potential gets oxidized and that it is added to the anode compartment.
Therefore. the voltage of a galvanic cell made with zinc and aluminium will be;
Voltage =Ered- Eoxd
= -0.76 - (-1.66)
= 0.9 V