Answer:
106.83
Explanation:
N = 332, l = 14 cm = 0.14 m, i = 0.88 A, B = 0.28 T
Let ur be the relative permeability
B = u0 x ur x n x i
0.28 = 4 x 3.14 x 10^-7 x ur x 332 x 0.88 / 0.14 ( n = N / l)
ur = 106.83
(a) 
The relationship between frequency and wavelength of an electromagnetic wave is given by

where
is the speed of light
is the frequency
is the wavelength
In this problem, we are considering light with wavelength of

Substituting into the equation and re-arranging it, we can find the corresponding frequency:

(b) 
The period of a wave is equal to the reciprocal of the frequency:

And using
as we found in the previous part, we can find the period of this wave:

Answer:
9.4 m/s
Explanation:
The work-energy theorem states that the work done on an object is equal to the change in kinetic energy of the object.
So we can write:

where in this problem:
W = -36.733 J is the work performed on the car (negative because its direction is opposite to the motion of the car)
is the initial kinetic energy of the car
is the final kinetic energy
Solving for Kf,

The kinetic energy of the car can be also written as

where:
m = 661 kg is the mass of the car
v is its final speed
Solving, we find

Incomplete question as the unit of volume is not written correctly.So the complete question is here:
A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm³?
Answer:

Explanation:
Given data
Mass m=240g
Volume V=89.0 cm³
To find
Density d
Solution
If rock displaces 89.0 cm³ of water means volume of rock is also 89cm³
So

Answer:
f = 6.37 Hz, T = 0.157 s
Explanation:
The expression you have is
y = 5 sin (3x - 40t)
this is the equation of a traveling wave, the general form of the expression is
y = A sin (kx - wt)
where A is the amplitude of the motion, k the wave vector and w the angular velocity
Angle velocity and frequency are related
w = 2π f
f = w / 2π
from the equation w = 40 rad / s
f = 40 / 2π
f = 6.37 Hz
frequency and period are related
f = 1 / T
T = 1 / f
T = 1 / 6.37
T = 0.157 s