∆H = m x s x ∆T, where m is the mass of the reactants, s is the specific heat of the product, and ∆T is the change in temperature from the reaction.
Answer:
731.25 g
Explanation:
The question asks us to calculate the mass of 12.5 moles of NaCl. The individual relative atomic masses of the elements were supplied. We must first obtain the molar mass of sodium chloride as follows;
Molar mass of sodium chloride= 23.0 + 35.5 = 58.5 gmol-1
From the formula;
Number of moles (n) = mass /molar mass
Number of moles of sodium chloride= 12.5 moles
Mass of sodium = The unknown
Molar mass of sodium chloride= 58.5gmol-1
Mass of sodium chloride= number of moles × molar mass
Mass of sodium chloride= 12.5 × 58.5
Mass of sodium chloride= 731.25 g
Answer: 3.6 L = 3600
Explanation: 3.6 L = 360 mL has a mistake. He multiplied by 100 instead of 1000.
I got this idk if it's correct: For measuring large distances, the kilometer (103 or 1000 meters) is often used. The basic unit of volume in the metric system is the liter (l). The most common derived unit is the milliliter (ml) (10-3 or 1/1000 of a liter). The volume of a milliliter is equal to the volume of a cube 1 centimeter per side.
Heat energy released : 167.2 kJ
<h3>Further explanation</h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
m = 2000 g
c = 4.18 J/ g ° C
∆t = 20 ° C
