1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FinnZ [79.3K]
3 years ago
12

A word used to describe if one substance can be dissolved in another

Chemistry
1 answer:
timama [110]3 years ago
8 0

Answer:

Soluble

Salt is soulble is water

Explanation:

Solubility although similar just means how <em>easily</em> it will disolve somthing that isnt soluble in one thing still has solubility

You might be interested in
Which of the following forms a new substance? melting, evaporating, freezing or burning
Slav-nsk [51]
It would be burning be cause when you freeze, evaporate, or melt anything it is just changing how fast the atoms are moving . Think of it like water, ice, and steam, they are all the same thing but in different forms because of melting, evaporating,and melting. Burning is breaking it down.
4 0
4 years ago
Read 2 more answers
Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.210 M HClO(aq) with 0.210 M KOH(aq).
Degger [83]
a) before addition of any KOH : 

when we use the Ka equation & Ka = 4 x 10^-8 : 

Ka = [H+]^2 / [ HCIO]

by substitution:

4 x 10^-8 = [H+]^2 / 0.21

[H+]^2 = (4 x 10^-8) * 0.21

           = 8.4 x 10^-9

[H+] = √(8.4 x 10^-9)

       = 9.2 x 10^-5 M

when PH = -㏒[H+]

   PH = -㏒(9.2 x 10^-5)

        = 4  

b)After addition of 25 mL of KOH: this produces a buffer solution 

So, we will use Henderson-Hasselbalch equation to get PH:

PH = Pka +㏒[Salt]/[acid]


first, we have to get moles of HCIO= molarity * volume

                                                           =0.21M * 0.05L

                                                           = 0.0105 moles

then, moles of KOH = molarity * volume 

                                  = 0.21 * 0.025

                                  =0.00525 moles 

∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525

and when the total volume is = 0.05 L + 0.025 L =  0.075 L

So the molarity of HCIO = moles HCIO remaining / total volume

                                        = 0.00525 / 0.075

                                        =0.07 M

and molarity of KCIO = moles KCIO / total volume

                                    = 0.00525 / 0.075

                                    = 0.07 M

and when Ka = 4 x 10^-8 

∴Pka =-㏒Ka

         = -㏒(4 x 10^-8)

         = 7.4 

by substitution in H-H equation:

PH = 7.4 + ㏒(0.07/0.07)

∴PH = 7.4 

c) after addition of 35 mL of KOH:

we will use the H-H equation again as we have a buffer solution:

PH = Pka + ㏒[salt/acid]

first, we have to get moles HCIO = molarity * volume 

                                                        = 0.21 M * 0.05L

                                                        = 0.0105 moles

then moles KOH = molarity * volume
                            =  0.22 M* 0.035 L 

                            =0.0077 moles 

∴ moles of HCIO remaining = 0.0105 - 0.0077=  8 x 10^-5

when the total volume = 0.05L + 0.035L = 0.085 L

∴ the molarity of HCIO = moles HCIO remaining / total volume 

                                      = 8 x 10^-5 / 0.085

                                      = 9.4 x 10^-4 M

and the molarity of KCIO = moles KCIO / total volume

                                          = 0.0077M / 0.085L

                                          = 0.09 M

by substitution:

PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)

∴PH = 8.38

D)After addition of 50 mL:

from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.

the molarity of KCIO = moles KCIO / total volume

                                   = 0.0105mol / 0.1 L

                                   = 0.105 M

when Ka = KW / Kb

∴Kb = 1 x 10^-14 / 4 x 10^-8

       = 2.5 x 10^-7

by using Kb expression:

Kb = [CIO-] [OH-] / [KCIO]

when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]

Kb = [OH-]^2 / [KCIO] 

2.5 x 10^-7 = [OH-]^2 /0.105

∴[OH-] = 0.00016 M

POH = -㏒[OH-]

∴POH = -㏒0.00016

           = 3.8
∴PH = 14- POH

        =14 - 3.8

PH = 10.2

e) after addition 60 mL of KOH:

when KOH neutralized all the HCIO so, to get the molarity of KOH solution

M1*V1= M2*V2

 when M1 is the molarity of KOH solution

V1 is the total volume = 0.05 + 0.06 = 0.11 L

M2 = 0.21 M 

V2 is the excess volume added  of KOH = 0.01L

so by substitution:

M1 * 0.11L = 0.21*0.01L

∴M1 =0.02 M

∴[KOH] = [OH-] = 0.02 M

∴POH = -㏒[OH-]

           = -㏒0.02 

           = 1.7

∴PH = 14- POH

       = 14- 1.7 

      = 12.3 
8 0
3 years ago
Read 2 more answers
Which of the following happens when an ionic bond is formed? (1 point)
bazaltina [42]

This problem is asking for an explanation of what happens when an ionic bond is formed. Although the choices are not given in the question, one can find them on the attached file and realize the answer is C "a less electronegative atom donates an electron to a more electronegative atom" according to:

<h3>Types of bonds:</h3><h3 />

In chemistry, the forces that hold atoms together are known as chemical bonds and act like connections for atoms to form compounds. There exist ionic and covalent bonds, so the formers occur when electrons are thoroughly donated from the least electronegative atom to the most electronegative one.

On the flip side, covalent bonds occur when the electrons are shared between the two or more of the atoms forming the compound. In such a way, one can discard choices A and B because they are more related to covalent bonds.

Therefore, one can select C "a less electronegative atom donates an electron to a more electronegative atom" as the correct answer, because not all the elements are able to donate more than one single electron, and the less its valency, the more ionic the compound turns out to be.

Learn more about types of bonds: brainly.com/question/792566

3 0
3 years ago
Explain your thoughts on whether or not using solely IR is a good method to make positive IDs of chemicals.
Fed [463]

Answer:

No, IR should not soely be used to identify molecules

Explanation:

IR is a method that identifies the functional groups in a molecule by deducing the frequency of stretching and vibration of bonds. Each peculiar type of bond has a frequency for the vibration of each bond represented on the IR spectrum.

However, one method is never enough to identify a compound. A combination of methods must always be used to clear up ambiguities arising from overlapping IR frequencies. Also,  interpretation of the nuanced peaks of the fingerprint region in IR spectra is quite challenging and only gives a fair idea of the functional groups present in the compound.

Therefore other methods such as NMR, UV-VISIBLE etc should also be involved in the identification of compounds.

6 0
3 years ago
Which of the following represents two molecules of carbon dioxide?
netineya [11]

Answer:

CO 2 is the correct answer.

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which does a meandering stream look like?
    13·2 answers
  • What happens when you open a bottle of perfume?
    8·1 answer
  • Which of the following could be classified as matter? desk,water,idea,cloud,helium,dream
    6·2 answers
  • Which of the following events fail to follow the law of conservation of matter? Select the correct answer below
    14·1 answer
  • How many atoms of oxygen are in 2.5 moles of CO2
    9·1 answer
  • Can someone please help with this !!!!
    9·1 answer
  • Number of atoms in 4.5 moles of Au?
    12·1 answer
  • Thermal energy is the average kinetic energy of particles of matter, whereas temperature is the total kinetic energy of particle
    6·1 answer
  • 12 G of carbon react with 16 G of oxygen how much carbon monoxide is formed ​
    5·1 answer
  • Select the plant cell
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!