<u>Answer:</u>
<em>A. 10.25</em>
<em></em>
<u>Explanation:</u>
Pkb =4.77
So pka = 14 - pka = 9.23


Initial 0.50M 0 0
Change -x +x +x
Equilibrium 0.50M-x +x +x


(-x is neglected) so we get

![pH=-log[H^3 O^+]\\\\pH=-log[1.72\times10^{-5}]\\\\pH=4.76](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E3%20O%5E%2B%5D%5C%5C%5C%5CpH%3D-log%5B1.72%5Ctimes10%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D4.76)
pOH = 14 - pH
= 14 - 4.76
pOH = 9.24 is the answer
Option A - 10.25 is the answer which is close to 9.24
Answer:
yes it is and sometimes it's not
L'eau se réchauffe elle s'intesifie et commnce a bouilloner ensuite L'eau s'évapore
Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed
