Answer: 95 degrees fahrenheit hope this helps :]
Explanation:
Explanation:
please mark me as brainlest
From the given pH, we calculate the concentration of H+:
[H+] = 10^-pH = 10^-5.5
We then use the volume to solve for the number of moles of H+:
moles H+ = 10^-5.5M * 4.3x10^9 L = 13598 moles
From the balanced equation of the neutralization of hydrogen ion by limestone written as
CaCO3(s) + 2H+(aq) → Ca2+(aq) + H2CO3(aq)
we use the mole ratio of limestone CaCO3 and H+ from their coefficients, which is 1 mole of CaCO3 is to react with 2 moles of H+, to compute for the mass of the limestone:
mass CaCO3 = 13598mol H+(1mol CaCO3/2mol H+)
(100.0869g CaCO3/1mol CaCO3)(1kg/1000g)
= 680 kg
The percentage error is given by multiplying relative error by 100%.
Therefore, to get the percentage error we need relative error which is given by dividing the absolute error with the actual value.
Absolute error = 0.133
Percentage error = 0.133/5.586 × 100%
= 2.38%
The percentage error is therefore; 2.38%
Answer:
Option D) Compound B may have a lower molecular weight.
Explanation:
Compound A and B are standing at the same temperature yet compound A is evaporating more slowly than compound B.
This simply indicates that compound B have a lower molecular weight than compound A.
This can further be seen when gasoline and kerosene are placed under same temperature. The gasoline will evaporate faster than kerosene because the molecular weight of the gasoline is low when compared to that of the kerosene.