Answer: 624 Hz
Explanation:
If the ratio of the inductive reactance to the capacitive reactance, is 6.72, this means that it must be satified the following expression:
ωL / 1/ωC = 6.72
ω2 LC = 6.72 (1)
Now, at resonance, the inductive reactance and the capacitive reactance are equal each other in magnitude, as follows:
ωo L = 1/ωoC → ωo2 = 1/LC
So, as we know the resonance frequency, we can replace LC in (1) as follows:
ω2 / ωo2 = 6.72
Converting the angular frequencies to frequencies, we have:
4π2 f2 / 4π2 fo2 = 6.72
Simplifying and solving for f, we have:
f = 240 Hz . √6.72 = 624 Hz
As the circuit is inductive, f must be larger than the resonance frequency.
Answer:
Explanation:
The distance will be the total distannce covered during the journey.
If you move 3 meters East and move 4 meters north, then the distance will be calculated as;
Distance = distnace through East+distance through north
Distance = 3m + 4m
<em>Distance = 7m</em>
Displacement is the distance covered in a specified direction. It is the shortest distance covered by me. This can be gotten using the Pythagoras theorem.
d² = 3²+4²
d² = 9+16
d² = 25
d = √25
d = 5m
<em>Hence the displacement of the object is 5metres</em>
Through your TV.
If you are watching your favorite TV show in YOUR living room, then the station the show is on, or the channel you changed to, has it on your TV.
Answer:
18.62 m/s
Explanation:
Given that:
A liquid with a density of 900 kg/m 3 is stored in a pressurized, closed storage tank.
Diameter of the tank = 10 m
The absolute pressure in the tank above the liquid is 200 kPa = 200, 000 Pa
At pressure of 200 kPa ; the final velocity = 0
Atmospheric pressure at 5cm = 101325 Pa
We are to calculate the initial velocity of a fluid jet when a 5cm diameter orifice is opened at point A?
By using Bernoulli's theorem between the shaded portion in the diagram;
we have:




where;
Pa = atmospheric pressure = 101325 Pa
= density of liquid = 900 kg/m³
= initial velocity = ???
g = 9.8 m/s²
= height of the hole from the buttom
= height of the liquid surface from the button


Thus, the initial velocity of the fluid jet = 18.62 m/s
In Newton's cannonball experiment, if the velocity is equal to the orbital velocity then the cannonball will stay in Orbit.
Newtons cannonball experiment stated that the distance that a cannonball will travel, before being drawn into the Earth by the forces of gravity, is dependent on the initial velocity.
Therefore, if the cannonball is launched at a velocity that matches the orbital velocity, then it will not be able to be drawn in by gravity due to the Earth moving away from the cannonball at the same speed at which the cannonball itself is falling.
This means that the cannonball will continue to fall without reaching the Earth, therefore staying in orbit, much like that of the moon or planets around the sun.
To learn more visit:
brainly.com/question/22360485?referrer=searchResults