The answer is atomic radii; the size or radii of an atom increases from left to right, versus the ionization energies and electronegativities of atoms which increase from right to left.
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:

First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:

Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:

This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
Answer: B- Chemical bonds are formed. Energy is released in the form of heat.
Explanation: I hoped that helped !
Answer:
1,4-hexanediamine contains two
functional groups.
Explanation:
1,4-hexanediamine is an organic molecule which contains two
functional groups at C-1 and C-4 position.
The longest carbon chain in 1,4-hexanediamine contains six carbon atoms.
Molecular formula of 1,4-hexanediamine is
.
1,4-hexanediamine used as a bidentate ligand in organometallic chemistry.
The structure of 1,4-hexanediamine is shown below.
If the energy level of a certain element is filled based on the maximum number of allowable electrons per level, then it is no longer reactive. With this, half-filled energy level means that the element may retain those electrons and attract electrons from other elements or it may give off its electrons.