Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
if i renember correctly its b
The answer is slows objects down.
Answer:
planet that is farthest away is planet X
kepler's third law
Explanation:
For this exercise we can use Kepler's third law which is an application of Newton's second law to the case of the orbits of the planets
T² = (
a³ = K_s a³
Let's apply this equation to our case
a =
for this particular exercise it is not necessary to reduce the period to seconds
Plant W
10² = K_s
a_w =
a_w =
4.64
Planet X
a_x =
a_x = \frac{1}{ \sqrt[3]{K_s} } 74.3
Planet Y
a_y =
a_y = \frac{1}{ \sqrt[3]{K_s} } 18.6
Planet z
a_z =
a_z = \frac{1}{ \sqrt[3]{K_s} } 41.8
From the previous results we see that planet that is farthest away is planet X
where we have used kepler's third law