The third one sliding friction
Explanation:
the answer is a) 0.00235 because 1/425=0.00235. hope I helped!
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!
Answer:
Increase in mass and height
Explanation:
The gravitational potential energy of an object can increase if the mass and height of object is increased.
Gravitational potential energy is the energy due to the position of a body.
It is expressed as:
Gravitational potential energy = mass x acceleration due gravity x height
Increasing mass and height will cause an increase in gravitational potential energy.
To do this we may use things that are good conductors - are painted dull black -
Have a air flow around them Maximised.