Answer:
W = 1.49 10⁻¹¹ kg
Explanation:
For this problem, let's use Newton's equation of equilibrium
F - W = 0
F = W (1)
Strength can be found from the definition of pressure
P = F / A
F = P A
The radiation pressure for a reflective surface is
P = 2 I / c)
We substitute in equation 1
2 I / c A = W
The intensity is defined by the ratio of the power between the area
I = P / A
P = I A
We substitute
2 P / c = W
W = 2 2.24 10-3 / 3 108
W = 1.49 10⁻¹¹ kg
Mechanical and Chemical. (Weathering and erosion)
Answer:
Explained
Explanation:
A) The total energy of the system is defined by the energy at maximum amplitude, which we'll call A. At that point, the energy of the system is
E = 1/2×m×A^2;
since energy is conserved, this is also the total amount of energy that the system ever has.
So at x=1/2A,
the potential energy of the system is 1/8×m×A^2
which is one-fourth of the system's total energy. Therefore, the remaining three-fourths is kinetic.
B) (i) Doubling the maximum amplitude will quadruple the total energy:

(ii) Doubling the maximum amplitude will double the maximum velocity

(iii) Doubling the maximum amplitude will double the maximum acceleration: m×a = -k(2A)
(iv) Doubling the maximum amplitude leaves the period unchanged:
(neither m nor k has changed).
Answer:
1.5 N
Explanation:
You've left us to guess what the question is. I will Assume it is what's the force?
Givens
m = 3 kg
vi = 1.5 m/s
vf = 4 m/s
t = 5 seconds
Formula
F = m * (vf - vi)/t
Solution
F = 3 * (4 - 1.5) / 5
F = 1.5 N
Answer:

Explanation:
Some data in the problem are missing.
Missing values:
Radius of the cylinder: 13 cm
Height of the cylinder: 4 cm
The volume of a cylinder is given by

where
r is the radius of the base of the cylinder
h is the height of the cylinder
In this problem, we have:
r = 13 cm (radius)
h = 4 cm (height)
Therefore, the volume of the cylinder is:
