Answer:
<h3>The answer is 8.5 kg</h3>
Explanation:
The mass of the object can be found by using the formula

where
f is the force
a is the acceleration
So we have

We have the final answer as
<h3>8.5 kg</h3>
Hope this helps you
At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?
Answer:
3.01L
Explanation:
Given parameters:
Initial pressure, P1 = 1.7atm
Initial volume, V1 = 4.25L
Final pressure, P2 = 2.4atm
Unknown:
Final or new volume, V2 = ?
Solution:
To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 final pressure
V2 final volume
1.7 x 4.25 = 2.4 x V2
V2 = 3.01L
I think you would use F = ma
F = 65*10
F = 650N
(The 10m/s is from acceleration due to gravity)
m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J