Answer:
Explanation:
We can solve this problem using the ideal gas law

where P is the pressure, V the volume, n the number of moles, R the ideal gas constant and T the temperature.
We can use the atmospheric pressure as 1 atm, and the body temperature as 36.5 °C, in Kelvin this is:

The ideal gas constant is:

taking all this in consideration, the number of moles will be:

* 309.65 \ K } [/tex]

F= a*m
F= 0.5 kg * 52m/s^2
F=26kgm/s^2 or 26N
Using KE = 1/2mv^2
m = mass (80kg)
v = velocity (?)
KE = kinetic energy (2500J)
2500/((1/2) x (80)) = v^2
Square root the answer to get: 7.91 m/s
Answer:
16,506 ft²
Explanation:
There are different ways you can divide the area using rectangles and circles. One way is to find the area of the entire width and length, then subtract the empty areas in the corners.
If we take the empty areas and put them together, we find their area is the area of a square minus the area of a circle.
A = (2r)² − πr²
A = 4r² − πr²
A = (4 − π) r²
So the area of the rink is:
A = WL − (4 − π) r²
A = (85)(200) − (4 − π) (24)²
A ≈ 16,506 ft²
<span>Pitch and frequency are more or less the same thing - high pitch = high frequency.
The freqency of vibration of a string f = 1/length (L) so as length decreases the frequency increases.</span>