I think d because they are both increasing
So, the frequency of that light approximately 
<h3>Introduction</h3>
Hi ! Here I will help you to discuss the relationship between frequency and wavelength, with the velocity constant of electromagnetic waves in a vacuum. We all know that regardless of the type of electromagnetic wave, it will have the same velocity as the speed of light (light is part of electromagnetic wave too), which is 300,000 km/s or
m/s. As a result of this constant property, <u>the shorter the wavelength, the greater the value of the electromagnetic wave frequency</u>. This relationship can also be expressed in this equation:

With the following condition :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength (m)- f = electromagnetic wave frequency (Hz)
<h3>Problem Solving</h3>
We know that :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength =
m.
What was asked :
- f = electromagnetic wave frequency = ... Hz
Step by step :






<h3>Conclusion :</h3>
So, the frequency of that light approximately 
<h3>See More :</h3>
Answer:
pushes it forward, pushes it backwards and then it moves
Answer:
Newton's Third Law
His third law states that for every action (force) in nature there is an equal and opposite reaction
Explanation:
Answer:
To increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.
Explanation:
First, we have to calculate the work function of the element. The maximum kinetic energy as a function of the wavelength is given by:

Here h is the Planck's constant, c is the speed of light,
is the wavelength of the light and W the work function of the element:

Now, we calculate the wavelength for the new maximum kinetic energy:

This wavelength corresponds to ultraviolet radiation. So, to increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.