Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
<h3>No:1</h3>
The object is moving with constant or uniform acceleration and in average speed
<h3>No:-2</h3>
The object is de accelerating
<h3>No:-3</h3>
The object deaccelerated and came to rest so fast.
<h3>No:-4</h3>
The object moves slowly first then accelerated.
<h3>No:-5</h3>
The object accelerated at first so fast then move with constant acceleration then again accelerated .
Answer:
C. Decreasing the distance between the objects.
Explanation:
Gravitational force depends on mass and distance. The farther the objects are apart, the less gravitational force/pull they have.