Mechanical energy can have mechanical systems. The only mechanical system in the list is the compressed spring. A car battery and a glowing incandescent lightbulb have electrical energy, a nucleus of atom has potential (internal) energy.
We use the equation of motion for vertical component,
Here, is displacement of bullet, is vertical initial velocity of bullet which is equal to zero because bullet was fired horizontally, and t is time of flight.
Therefore,
Given,
Substituting the values, we get time of flight
"The equation can be used to calculate the power absorbed by any surface" statement concerning the Stefan-Boltzmann equation is correct.
Answer: Option A
<u>Explanation:</u>
According to Stefan Boltzmann equation, the power radiated by black body radiation source is directly proportionate to the fourth power of temperature of the source. So the radiation transferred is absorbed by another surface and that absorbed power will also be equal to the fourth power of the temperature. So the equation describes the relation of net radiation loss with the change in temperature from hotter temperature to cooler temperature surface.
So this law is application for calculating power absorbed by any surface.
Answer:
46.8 kg
Explanation:
Mass = (density)(volume)
= (1.3)(36)
<u>M</u><u>a</u><u>s</u><u>s</u><u> </u><u>=</u><u> </u><u>4</u><u>6</u><u>.</u><u>8</u><u> </u><u>k</u><u>g</u>
Answer:
B. A magnet being moved into or out of the coil
Explanation:
Faraday law of electromagnetic induction states that when there is change in flux , an emf is produced . Among the given instances , only in case of B , flux is changing . So current will be induced in the coil . We shall see how it takes place .
A wire carrying constant current will produce magnetic flux in nearby coil but there is no change in flux because current as well as position of wire with respect to coil are not changing .
Passing of magnetic field through a stationary coil produces flux in the coil but here too there is no change in flux so no current will be induced .
A magnet positioned near a coil creates magnetic flux in the coil but the magnitude of flux remains constant so no change in flux and no creation of induced current .