Electromagnetic radiation is an energy that is known as light. so electromagnetic radiation will have the same speed as the speed of light which is 3 x 10^8 m/s. so the distance it travel at 55 x 10^-6 s is:
D = ( 3 x 10^8 m/s ) ( 55 x 10^-6 s )
D = 16500 m
Potential energy<span> is the </span>energy<span> that is stored in an object due to its position relative to some zero position. It is calculated by the expression PE = mgh where mg is the weight of the book and h is the height. It is calculated as follows:
PE = 50(1) = 50 J
</span>PE = 50(1.5) = 75 J
PE = 50(2) = 100 J
Answer:
Explanation:
Given
Mass of monkey A=20lb
Mass of monkey B=26lb
Mass of monkey C=25lb
acceleration of monkey A=
acceleration of monkey B=0
acceleration of monkey C=
Force Due to monkey A
Force Due to monkey A
Force Due to monkey A
In addition to it Weights of monkeys will be acting downwards therefore net Downwards force is balanced by tension
T=
Answer:
50,000 V/m
Explanation:
The electric field between two charged metal plates is uniform.
The relationship between potential difference and electric field strength for a uniform field is given by the equation

where
is the potential difference
E is the magnitude of the electric field
d is the distance between the plates
In this problem, we have:
is the potential difference between the plates
d = 15 mm = 0.015 m is the distance between the plates
Therefore, rearranging the equation we find the strength of the electric field:

When an object gets heated by a temperature ΔT energy needed, E = mcΔT
Here energy is given E = 2050 J
Mass of object = 150 g
Change in temperature ΔT = 15
= 15 K
a) Heat capacity of an object equal to the ratio of the heat added to (or removed from) an object to the resulting temperature change.
So heat capacity = E/ΔT = 2050/15 = 136.67 J/K
b) We have E = mcΔT
c = 
So object's specific heat = 911.11 J/kgK