<span>it tells you the sequence in which events occurred, not how long ago they occurred.</span>
Answer:
Molarity = 2.3 M
Explanation:
Molarity can be calculated using the following rule:
Molarity = number of moles of solute / volume of solution
1- getting the number of moles:
We are given that:
mass of solute = 105.96 grams
From the periodic table:
atomic mass of carbon = 12 grams
atomic mass of hydrogen = 1 gram
atomic mass of oxygen = 16 grams
Therefore:
molar mass of C2H6O = 2(12) + 6(1) + 16 = 46 grams
Now, we can get the number of moles as follows:
number of moles = mass / molar mass = 105.96 / 46 = 2.3 moles
2- The volume of solution is given = 1 liter
3- getting the molarity:
molarity = number of moles of solute / volume of solution
molarity = 2.3 / 1
molarity = 2.3 M
Hope this helps :)
When a single compound breaks down into two or more compounds or elements in a chemical reaction then it is known as decomposition reaction.
The chemical symbol for sodium carbonate is
.
The decomposition of sodium carbonate is:

The decomposition of sodium bicarbonate,
will result in the formation of sodium oxide,
and carbon dioxide,
.
Hence, carbon dioxide,
will produce with sodium oxide,
on decomposition of
.
Elements with three p-electrons....
That would be N, P, As, Sb, and Bi -- elements in group 15
For example, energy diagram showing "empty" orbitals up through the 3p.
.....3p __ __ __
3s __
.....2p __ __ __
2s __
1s __
Energy diagram of phosphorous showing three unpaired electrons in 3p-sublevel
.....3p ↑_ ↑_ ↑_
3s ↑↓
.....2p ↑↓ ↑↓ ↑↓
2s ↑↓
1s ↑↓
According to Hund's rule, the electrons singly occupy the p-orbitals, and all have the same spin.