Answer:
red and 4.6×10^-40
Explanation:
The energy of a foton is calculated by thefollowing formula: Efoton=h×(c/lapda). Fill in 7.0×10^-7 gives us Efoton=6.626×10^-34 (planck constant) × 7.0×10^-7=4.6×10^-40.
18.The octet rule tells us that in every chemical
reactions, elements will either gain or lose electrons to attain the noble gas electron
configuration. This stable<span> electron configuration is known as the octet configuration
since it is composed of 8 valence. Oxygen’s electron configuration is 1s2 2s2
2p4. So when</span> oxygen reacts with
other elements to form compounds, it completes the octet configuration by
taking 2 electrons from the element
it reacts with
19. Actually pure metals are made up not of
metal atoms but rather of closely packed cations (positively charge particles).
These cations are then surrounded by a pack of mobile valence electrons which
drift from one part of the metal<span> to
another. This is called metallic bond.</span>
20. This is the
energy which is needed to break a single bond. When the dissociation energy is
large, this means that the compound is more stable. Since carbon to carbon
bonds have high dissociation energy, therefore they are not very reactive.
21. Network solids are type of solids
in which the atoms are covalently bonded to one another, so they are very
stable. It takes higher temperature to melt them because breaking these
covalent bonds required greater energy. Some examples are:
- Diamond
<span>-Silicon Carbide</span>
To get the molarity you need to follow this equation
moles of solute
Molarity (M = -----------------------
Liters of solution
But before you apply that equation you need to find the moles of solute and the liters of solution. Follow this equation
Na2SO4 + BaCl2 = BaSO4 + 2 NaCl
Solution
Moles of BaSO4 = 5.28 g
---------------
233.43 g / mol
= 0.0226 moles
Moles of NaSO4 = 0.0226
0.0226 mole
Molarity = -----------------
0.250 L
= 0.0905 mol / L
So the answer is 0.0905 mol / L
<h3>Answer:</h3>
0.64 Moles of Propane
<h3>Explanation:</h3>
Data:
Moles of Carbon = 1.5 mol
Conversion factor = 7 mol C produces = 3 mol of Propane
Solution:
As we know,
7 moles of Carbon produces = 3 moles of Propane
Then,
1.5 moles of Carbon will produce = X moles of Propane
Solving for X,
X = (1.5 moles × 3 moles) ÷ 7 moles
X = 0.6428571 moles of Propane
Or rounded to two significant figures,
X = 0.64 Moles of Propane