PH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH) = 10^(-11.5) = 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
pH = 2.5 implies one significant digit
Answer: <span>The molecules of a substance which must have the
<u>a</u></span>
<u>bility to move past one another</u> are said to be flexible.
Explanation: Those substances are said to be flexible which can be
bent without breaking. There are many substances which are
hard in nature but still can be bent. The hardness of such materials is due to
strong interactions between the molecules and the flexibility comes due to their
amorphous backbone. Therefore, greater the
crystalline level of macromolecules lesser is the flexibility and greater the amorphous character greater is the flexibility and vice versa. Also, the flexibility of polymers is increased by adding
plastisizers in it. Plastisizers make the hard polymers flexible by breaking the crosslinkers and enabling the macromolecules to move past one another.
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to figure out the required net ionic equation by firstly writing out the complete molecular equation between aspirin and sodium acetate:

Whereas acetic acid and sodium acetylsalicylate are formed. Now, we write the complete ionic equation whereby sodium acetate and sodium acetylsalicylate are ionized because they are salts yet neither aspirin nor acetic acid are ionized as they are weak acids:

Finally, for the net ionic equation we cancel out the sodium spectator ions to obtain:

Regards!
Answer:
.094 M
Explanation: 0.32molNaCl/ 3.4L = .094M
Sulfur has 6 electrons, so we put 6 in the first spot.
Oxygen has 6 electrons too, but since there are 3, we would multiply 6 times 3 , which equals 18, then add that too.
The 2 is added because there is that negative 2 at the top of the formular, which indicates the presence of two extra valence electrons.
the equation would be
6 + 18 + 2 = 26